
Constrained Swap Dynamics over a Social
Network in Distributed Resource Reallocation

Abdallah Saffidine* and Anaëlle Wilczynski†

* Australian National University, College of Engineering & Computer Science,
Canberra, Australia, abdallah.saffidine@gmail.com

† Université Paris-Dauphine, PSL, CNRS, LAMSADE, Paris, France,
anaelle.wilczynski@dauphine.fr

Abstract. We examine a resource allocation problem where each agent
is to be assigned exactly one object. Agents are initially endowed with a
resource that they can swap with one another. However, not all exchanges
are plausible: we represent required connections between agents with a
social network. Agents may only perform pairwise exchanges with their
neighbors and only if it brings them preferred objects. We analyze this
distributed process through two dual questions. Could an agent obtain
a certain object if the swaps occurred favourably? Can an agent be guar-
anteed a certain level of satisfaction regardless of the actual exchanges?
These questions are investigated through parameterized complexity, fo-
cusing on budget constraints such as the number of exchanges an agent
may be involved in or the total duration of the process.

Keywords: Resource allocation; Distributed process; Social network;
Parameterized complexity

1 Introduction

Reallocating resources among agents is a central question widely studied both
in computer science and economics [14, 10, 3, 1]. This problem refers to a partic-
ular setting of resource allocation, where the agents are initially endowed with
items [6]. Resource reallocation models many real-life situations, like reallocating
tasks between employees or reassigning time slots in schedules. In such exam-
ples, agents are often assigned a single task. With exactly one item per agent, the
problem is known as housing-market [1, 19]. In this context, a central authority
may decide how to redistribute the objects [19, 4]. Alternatively, the agents may
direct the reallocation by trading and negotiating among them in a distributed
process [8, 9, 7]. Although largely studied in general resource reallocation [18, 12,
14, 11], this approach has only recently been introduced in housing market [10].

In a distributed process, natural obstacles may inhibit the agents in the
trades. Lack of trust may lead agents to adopt a greedy behavior so as to be
immediately better off in their new acquisition. Logistics difficulties, e.g., com-
munication and geographical distance, may also prevent some trades to occur.

This can be modeled by restricting trades to the links of a social network [17,
13], with exchanges limited to the cliques [9] or edges [16] of the graph.

We consider this latter format: a housing market with exchanges between
neighbors in a social network [16]. One of the main questions is the Reachable
Object (RO) problem: Given a target agent A and a target object x, is there a
sequence of exchanges ensuring A is eventually allocated x? This problem is very
appealing but is NP-complete even when the network is a tree [16]. We attempt
to mitigate this negative result by looking at more realistic constrained settings.

We draw inspiration from the fact that an agent may not be willing to perform
a large number of swaps or to wait a long time before getting the desired object.
We introduce natural budget constraints, the number of exchanges agents may
make and the total duration of the process, and we perform a refined complex-
ity analysis. Moreover, we introduce Guaranteed Level of Satisfaction
(GLS), a problem related to RO but more realistic. GLS asks whether an agent
can be guaranteed to be eventually allocated an item at least as good as the input
target item, regardless of the exchanges other agents perform, provided they are
rational swaps. While RO takes an optimistic perspective, GLS adopts a more
pessimistic point of view beyond “lucky” exchange sequences. These problems
naturally arise when we analyze the distributed process of exchanges in realloca-
tion but they can also model concrete issues. As an example, consider an online
exchange platform where users input in the system which item they hold as well
as their preference. A user may request a target object to the centralized sys-
tem which would then suggest a series of intermediate swaps to bring it to her.
Even in such a context, restricted rational exchanges are relevant: geographical
constraints can still prevent two agents to trade and the guarantee of getting a
better object is essential as otherwise an agent could be left worse off than she
started, should an intermediate agent exit the system during the process.

When parameterizing the problems by the maximal number of swaps per
agent, we show intractability even for highly structured graphs. However, when
constraining the duration of the process, we obtain more promising results: RO
and GLS are tractable in a very relevant class of network, namely bounded
degree graphs, and in general the problems are tractable when the duration
does not depend on the input size. These results contrast strongly with both
previous work [16] and our first parameterization, and they focus on realistic
scenarios: actual social networks have indeed bounded degrees and the time that
an agent is willing to wait for a target object is independent from the input size.

We start with the swap dynamics model, RO and GLS, and some complexity
background. Section 3 relates RO and GLS. Our results for the max-swaps and
for the total-duration parameters are in Section 4 and 5 respectively.

2 Formal Framework

2.1 Swap Dynamics Model

Let N be a set of n agents, and M a set of n resources (or objects). Each agent
i ∈ N has ordinal strict preferences �i over the objects. An allocation σ is a

bijection σ : N → M , assigning to each agent exactly one object. The object
assigned to agent i in σ is denoted by σi. Each agent is initially endowed with an
object, and we denote by σ0 the initial allocation. The agents are embedded in
a social network, represented by an undirected graph G = (N,E). An instance
of swap dynamics model is a tuple I = (N,M,�, σ0, G).

Agents can exchange their objects so as to obtain better objects, but not
all exchanges are plausible. The possibilities depend on the social network and
on the preferences of the agents. We only admit swaps, rational trades between
neighbors. Formally, a swap in an allocation σ is a trade between two adjacent
agents (i, j) ∈ E such that the exchange is rational, i.e., σi �j σj and σj �i σi.

A sequence of swaps is a sequence of allocations (σ0, . . . , σt) such that a swap
is performed between two consecutive allocations σi and σi+1. An allocation σ is
reachable if there is a sequence of swaps leading to it, i.e., there exists a sequence
(σ0, . . . , σt) such that σt = σ. An allocation σ is stable if no swap is possible from
σ. An object x is reachable for agent i if there is a sequence of swaps (σ0, . . . , σt)
where σti = x. Swap dynamics refers to a distributed process where agents may
rationally exchange their objects when they are neighbors in the network, until
a stable allocation is reached.

Example 1. Consider an instance where n = 4 with the following social network
and preferences. The framed objects represent the initial object of each agent.

A
B

C
D

A : b � c � a � d
B : c � a � b � d

C : d � a � b � c

D : a � b � d � c
Initially, only the swaps between agents A and B, and B and C are possible.
The rational swap (A,C) is not possible because the agents are not adjacent.
The swap (A,D) is not possible because it is not rational for A. The sequence of
exchanges (A,B), (B,C), and (C,D) gives rise to a reachable allocation where
every agent gets her best object. This is stable: no further swap can be performed.

2.2 Questions

We investigate swap dynamics by analyzing two natural decision problems.

Reachable Object (RO):

Instance: I = (N,M,�, σ0, G), A ∈ N , x ∈M .
Question: Is there a sequence of swaps (σ0,. . . , σt) such that σtA = x?

Guaranteed Level of Satisfaction (GLS):

Instance: I = (N,M,�, σ0, G), A ∈ N , y ∈M .
Question: For all sequence of swaps (σ0, . . . , σt) where σt is stable, does it hold
that either σtA = y or σtA �A y?

When asking whether an agent can obtain some object, swap dynamics with
a large number of swaps may not be realistic. We thus study three variants of RO
and GLS where the quantity of swaps in a solution sequence is limited. In each
variant, this quantity is measured differently, leading to different complexity-
theoretic characterizations of the problem.

– max : Every agent is involved in no more than k swaps.
– sum: The total length of the sequence is no more than k.
– makespan: The makespan of the sequence is no more than k.

The makespan of a sequence of swaps is the minimum time that elapses from
the beginning to the end, when we allow parallel swaps. This notion can be
formalized as follows. Let s = (σ0, . . . , σt) be a sequence of swaps. A parallel
decomposition of s is a tuple of integers ` = (`0, `1, . . . , `m) of length |`| = m,
such that 0 = `0 < `1 < · · · < `m = t, and for all 0 ≤ i < m the swaps
between allocation σ`i and allocation σ`i+1 do not involve the same agents. In
other words, the swaps between σ`i and σ`i+1 can be performed simultaneously.
The makespan is the length m of the shortest parallel decomposition. Observe
that the makespan of a sequence can be computed in linear time, and that the
sum parameter is a worst case bound in case no parallel swaps take place.

2.3 Parameterized complexity

Parameterized complexity aims at solving hard problems in time f(k)nO(1),
called FPT time (fixed-parameter tractable), where n is the size of the instance,
f is a computable function, and k is a parameter of the problem. Assuming the
problem we are trying to solve is NP-hard, function f has to be superpolynomial,
unless P = NP. However, if our parameter k is small compared to the size of the
instance n, we achieve that the blow-up is limited to the small value k.

Some problems are highly suspected not to admit any algorithm in time
f(k)nO(1) for any computable function f , and thus to be FPT. There are hierar-
chies of complexity classes beyond FPT: W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ . . ., and
A[1] ⊆ A[2] ⊆ · · · ⊆ AW[SAT] ⊆ . . . ⊆ XP, where W[1] = A[1], W[t] ⊆ A[t] for any
t >1, and W[SAT] ⊆ AW[SAT]. For instance, W[1] is the class of parameterized
decision problems that can be solved by a nondeterministic single-tape Turing
machine within k steps, and XP is the class of decision problems solvable in time
O(nf(k)) for some computable function f .

As a rudimentary informal intuition, FPT and W[1] can be thought of as cor-
responding to P and NP in the parameterized world. For instance, clique, the
problem of finding a clique of size k in a graph, is W[1]-complete for FPT reduc-
tions, where an FPT reduction may blow-up the instance size n only polynomially
but the new parameter can be any computable function of the old parameter.

2.4 First-order logic

A vocabulary τ is a finite set of relation symbols. A finite structure A over τ
consists of a finite set A, called the universe, and for each R in τ a relation over
A. We assume a countably infinite set of variables. Atoms over vocabulary τ are
of the form x1 = x2 or R(x1, . . . , xk) where R ∈ τ and x1, . . . , xk are variables.
First-order (FO) formulas over τ are built from atoms over τ using standard
Boolean connectives ¬,∧,∨ and from quantifiers ∃,∀ followed by a variable. Let
ϕ be an FO formula. The variables of ϕ that are not in scope of a quantifier are

its free variables. Let ϕ(A) be the set of all assignments of elements of A to ϕ’s
free variables, such that ϕ is satisfied. A is a model of ϕ if ϕ(A) is not empty.
The class Σ1 (resp. Σ2) contains all FO formulas of the form ∃x1, . . . ,∃xkϕ
(resp. ∃x1, . . . ,∃xk∀y1, . . . ,∀ykϕ) where ϕ is a quantifier free FO formula.

Let Φ be a class of formulas. The model checking problem inputs a finite
structure A and a formula ϕ ∈ Φ and asks whether the formula satisfies the
model, ϕ(A) 6= ∅. A natural parameter is the size of (a reasonable encoding of)
ϕ. We will use one result bridging model checking and parameterized complexity.

Theorem 1. [15] Model checking the existential fragment of first-order logic,
MC(Σ1), is W[1]-complete. Model checking the second level of the hierarchy,
MC(Σ2), is A[2]-complete.

3 Relation between RO and GLS

Reachable Object (RO) asks whether an agent A can obtain an object x by
a sequence of swaps. RO is known to be NP-complete even for trees [16]. Guar-
anteed Level of Satisfaction (GLS) asks whether agent A is guaranteed
to obtain object y or an object preferred to y in any stable reachable allocation.
GLS is even more natural than RO since it offers guarantees for the agent and
does not only focus on lucky configurations. It is close to the complementary of
RO, and thus the study of RO also contributes to the understanding of GLS.

Proposition 2. co-RO is linearly reducible to GLS.

Proof sketch. We perform a reduction from the co-RO problem asking whether
object x is unreachable for agent A. Let I = {(N,M,�, σ0, G), A, x} be an
instance of co-RO. An instance I ′ = {(N ′,M ′, G′,�′, σ0′), A, y} of GLS is con-
structed by adding an agent Y and an object y. Initial allocation σ0′ is the same
as σ0 for all agents in N and assigns y to Y . The social network G′ has the same
structure as G, with one more edge (Y,A). Denote by a the object of agent A in
σ0, and by Pa the set of objects ranked in �A between x and a (a included, x
excluded), if x is preferred to a. If A does not prefer x to a, then Pa contains a
and all the objects preferred to a. Denote by Px the set of objects ranked before
x in the preferences of A. The preferences �′ are constructed from �, by moving
the objects in Px to the end of �′A, and by putting y at the top of �′A. The
agents in N \ {A} rank y last, and Y only prefers the objects of Pa to object y.

We claim that x is not reachable for A in I iff A obtains y or an object
preferred to y in any reachable stable allocation in I ′. This part is omitted.

This result establishes the computational difficulty of GLS, since RO is NP-
complete even on trees [16] and the previous reduction adds only one agent and
possibly one swap to an instance of RO. Moreover, observe that GLS belongs
to co-NP: after guessing a reachable stable allocation, one can directly check
whether agent A owns y or an object that she prefers to y.

Corollary 3. GLS is co-NP-complete even for trees.

We refine the complexity of the problems using natural parameters: the num-
ber of swaps per agent and the length of the sequence. Although RO and GLS
are close to be dual problems, that they are indeed not complementary. GLS
focuses on stable allocations. A k-bound on the sequence of swaps introduces a
dependency on k on the notion of stability: a stable allocation is either stable in
the standard meaning, or is reached after k swaps. Stability is not necessary in
RO because for an assignment solution σ where agent A gets object x, all the
stable allocations reachable from σ assign to A an object preferred to x or x.

4 Maximum Number of Swaps per Agent

Consider that the agents are not willing to perform an important number of
swaps in the whole swap process. Surprisingly in this context, our two problems,
RO and GLS, remain difficult even for a very small maximum number of swaps.

Theorem 4. For fixed k ≥ 2, RO-max is NP-complete, even on degree 4 graphs.

Proof. Membership in NP is straightforward, as it is a special case of the uncon-
strained RO problem, known to be in NP.

For hardness, we start with k = 2 and reduce from (3, B2)-SAT—the re-
striction of SAT to instances where each clause contains three literals and each
variable occurs exactly twice as a positive literal and twice as a negative literal.
This variant of the propositional satisfiability problem is NP-complete [5].

We are given an instance of (3, B2)-SAT with n variables {x1, . . . , xn} and

m clauses {C1, . . . , Cm}. We create a literal-agent Y `j (resp., Y `j) for each `th

(` ∈ {1, 2}) occurrence of literal xj (resp., xj), and a variable-agent Yj for each
variable xj . Two clause-agents Ki and K ′i are created for each 0 < i < m. Three
other agents Y0, K ′0 and Km are added. Each agent initially owns an object
denoted by the lower-case version of her name, e.g., agent Ki gets object ki.

In the network, we have the paths [Yj−1, Y
1
1 , Y

2
1 , Yj] and [Yj−1, Y 1

1 , Y
2
1 , Yj]

for each 1 ≤ j ≤ n, and the edge (Ki,K
′
i) for each 1 ≤ i < m. If the `th literal

xj (resp., xj) belongs to clause Ci, then we have the path [K ′i−1, Y
`
j ,Ki] (resp.,

[K ′i−1, Y
`
j ,Ki]). We connect Km and Yn. See for an example Figure 1.

The preferences of the agents are given below. Notation {`i} stands for the
literal-objects of clause Ci ranked in arbitrary order and k(xji) (resp. k(xji))
for the object related to the clause in which the jth occurrence of xi (resp. xi)
appears. The objects that are not mentioned in the preferences are ranked in
arbitrary order after the initial endowment.

K′0 : {`1} � b � [. . .]

Ki : k′i � b � ki � [. . .] Y 1
j : k(x1

j) � b � y2
j � a � y1

j � [. . .]

K′i : {`i+1} � b � k′i � [. . .] Y 2
j : k(x2

j) � b � yj � a � y2
j � [. . .]

Km : a � b � km � [. . .] Y
1
j : k(x1

j) � b � y2
j � a � y1

j � [. . .]

Y0 : y1
1 � y1

1 � a � [. . .] Y
2
j : k(x2

j) � b � yj � a � y2
j � [. . .]

Yn : b � a � yn � [. . .] Yj : y1
j+1 � y1

j+1 � a � yj � [. . .]

We claim that all clauses are satisfiable iff object b reaches agent Yn. The only
way for Yn to get hold of b is by swapping a with Km. Object b can only reach
Km via clause-agents and literal-agents, while a can only reach Yn via variable-
agents and literal-agents. Agents perform at most two swaps, so no literal-agents
can be involved in the move of both a and b.

Suppose that truth assignment φ satisfies all clauses. Let Ti be a literal-agent
of clause Ci related to a true literal in φ. Since all clauses are satisfiable, object b
can reach Km via the path [K ′0, T1,K1,K

′
1, T2, . . . , Tm−1,Km−1,K

′
m−1, Tm,Km].

For variable xj , let Z1
j and Z2

j be the literal-agents related to the literal of xj
that is false in φ. Clearly, these agents are not an agent Ti. It suffices for a to
reach Yn via the path [Y0, Z

1
1 , Z

2
1 , Y1, . . . , Yn−1, Z

1
n, Z

2
n, Yn].

Suppose now that object b is reachable for agent Yn. By construction, the
path of b to Km goes through exactly one literal-agent per clause, while the path
of a to Yn goes through exactly two literal-agents associated with the same literal
for each variable. Thus, the truth assignment of variables that sets to true the
literals related to literal-agents in the path of object b, satisfies all the clauses.

If k > 2, we adapt the reduction via a delay gadget added to each agent.

K′0

Y 1
1 Y 1

2 Y 1
3

Y0

K1 K′1

Y
1
1 Y 2

2 Y
1
3

Y1

K2 K′2

Y 2
1 Y

1
2 Y 2

3

Y2

K3 K′3

Y
2
1 Y

2
2 Y

2
3

Y3

K4

Fig. 1. Graph construction for an instance of (3, B2)-SAT with four clauses where
C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), C3 = (x1 ∨ x2 ∨ x3), and C4 = (x1 ∨ x2 ∨ x3).

From Prop 2 and its proof, the same hardness exists for GLS, with an addi-
tional swap and an additional neighbor for agent A who must obtain the object.

Corollary 5. For k ≥ 3, GLS-max is co-NP-complete, even on degree 5 graphs.

One could think that the problem is easier when the structure of the network
is restricted to trees. Yet, it is possible to prove that RO-max on trees is W[SAT]-
hard. We leave out the lengthy formal proof but we state the main idea. We
reduce from Monotone Weighted Satisfiability [2]. Can an input propositional
formula ϕ with no negations be satisfied with a truth assignment of weight k? We
build an instance of RO-max with a graph based on the syntax tree of ϕ where
k chosen variable-objects must move to the occurrences of their corresponding
variable as a prerequisite to given object x reaching given agent A. Since the
variable-objects make up almost all the swaps, O(k) swaps per agent suffice.

Globally, the problems remain difficult in very simple graphs even when the
number of swaps per agent is limited. Fortunately, the parameters on the length
of the sequence lets us circumvent the general difficulty of the two problems.

5 Length of the Sequence of Swaps

Two parameters are used to bound the length of the sequence of swaps: the total
number of exchanges and the makespan. Contrary to the previous parameter,
they lead to circumscribe the problems into parameterized complexity classes
that are not so high in the hierarchy, allowing tractability results when the
parameters are bounded by a constant. Moreover, for bounded degree graphs,
relevant in the context of social network, we obtain fixed parameter tractability.

Theorem 6. RO-sum and RO-makespan are W[1]-hard even for trees.

Proof sketch. We perform a reduction from clique, the problem of deciding
whether there exists a clique of size k in a graph G = (V,E) such that V =
{1, ..., n} and |E| = m. Assume that each edge in E is written (v, w) such that
v < w, and consider the lexicographical order over E. Let us denote by e1i and
e2i the first and second vertex of the ith edge. Let dv be the degree of vertex v
and δv(d), for 1 ≤ d ≤ dv, the dth edge incident to v. We construct an instance
I ′ of RO (see Fig. 2 for an example) by creating:

– two connected agents X and Y , and two vertex-agents Uvwv and Uvww for
each edge (v, w) ∈ E, connected via a path [Y, Uvwv , Uvww].

– agents T and T `, for 1 ≤ ` ≤ k, representing the k vertices of the clique that
we must choose. They are connected via a path to Y : [Y, T 1, . . . , T k, T].

– agents Av and A`v, for v ∈ V and 1 ≤ ` < k, representing the choice of the
k − 1 edges of the clique that are incident to v if v belongs to the clique.
They are connected via a path to Y for each v: [Y,A1

v, . . . , A
k−1
v , Av].

– agents T `∗ adjacent to T `, for 1 ≤ ` ≤ k, and agents A`∗v adjacent to A`v, for
1 ≤ ` < k and v ∈ V . They are used to “validate” their associated agent by
giving to her their initial object once they own an expected object.

– auxiliary agents used to facilitate the passage of some objects: if an agent B
has a connected auxiliary agent B[z], then the swap with B[z] must precede a
swap for getting an object associated with z. The auxiliary agents we use are
agents Y [vw] corresponding to edge (v, w) and connected to Y , agents Y [v]

corresponding to vertex v and connected to Y , agent Y [t] corresponding to

object t and connected to Y , agents A
`[δv(d)]
v corresponding to edge δv(d), for

1 ≤ d ≤ di, and connected to agent A`v, for v ∈ V and 1 ≤ ` < k, and agents
T `[v] corresponding to vertex v and connected to agent T ` for 1 ≤ ` ≤ k.

The initial object of an agent is denoted by the lower-case version of her
name, e.g., agent Y [v] gets object y[v]. The preferences of the agents are as
follows (objects in brackets may not exist for all indices).

YX

U12
1U12

2

U13
1

U13
3

U23
2

U23
3

U34
3

U34
4

Y [12]

Y [13]

Y [23]
Y [34]

Y [1]

Y [2]

Y [3]

Y [4]

Y [t]

A1
1 A1

2 A1
3 A1

4

A2
1

A1

A
1[12]
1

A
1[13]
1A1∗

1

A
2[12]
1

A
2[13]
1A2∗

1

A2
2

A2

A
1[12]
2

A
1[23]
2A1∗

2

A
2[12]
2

A
2[23]
2A2∗

2

A2
3

A3

A
1[13]
3

A
1[23]
3

A
1[34]
3

A1∗
3

A
2[13]
3

A
2[23]
3

A
2[34]
3

A2∗
3

A2
4

A4

A
1[34]
4A1∗

4

A
2[34]
4A2∗

4

T 1

T 2
T 3

T

T 1∗ T 2∗
T 3∗

T 1[1]

T 1[2]

T 1[3]

T 1[4]

T 2[1]

T 2[2]

T 2[3]

T 2[4]

T 3[1]

T 3[2]

T 3[3]

T 3[4]

Fig. 2. Graph construction for an instance of clique with vertices {V1, V2, V3, V4} and
k = 3. The edges are: {V1, V2}, {V1, V3}, {V2, V3} and {V3, V4}.

X : t � x � [. . .] Av : ak−1∗v � av � [. . .] T : tk∗ � t � [. . .]

Uvwv : a
1[vw]
v � uvww � y[vw] � uvwv � [. . .] Uvww : y[vw] � uvww � [. . .]

A
`[δv(d)]
v : (a

`+1[δv(dv)]
v) � · · · � (a

`+1[δv(1)]
v) � a`v � a

`[δv(d)]
v � [. . .] A`∗v : u

δv(dv)
v � · · · � uδv(1)v � a`∗v � [. . .]

T `[v] : (t`+1[v−1]) � · · · � (t`+1[1]) � t` � t`[v] � [. . .] T `∗ : a1 � a2 � · · · � an � t`∗ � [. . .]

Y [v] : (t1[v−1]) � · · · � t1[1] � a1[em]
e2m

� · · · � a1[e1]
e21
� y[v] � [. . .]

Y [vw] : a
1[em]
e2m

� · · · � a1[e1]
e21
� y � y[vw] � [. . .]

A`v : y[v] � (a`−1∗v) � av � a`∗v � u
δv(dv)
v � a`[δv(dv)]v � · · · �

(a
`+1[δv(2)]
v) � uδv(2)v � a`[δv(2)]v � (a

`+1[δv(1)]
v) � uδv(1)v � a`[δv(1)]v � a`v � [. . .]

T ` : y[t] � (t`−1∗) � t � t`∗ � an � t`[n] � · · · �
(t`+1[2]) � a2 � t`[2] � (t`+1[1]) � a1 � t`[1] � t` � [. . .]

Y : x � t � y[t] � t1[n] � an � y[n] � · · · � t1[1] � a1 � y[1] �
a
1[em]
e2m

� ueme2m � a
1[em]
e1m

� ueme1m � y
[em] � · · · � a1[e1]

e21
� ue1

e21
� a1[e1]

e11
� ue1

e11
� y[e1] � y � [. . .]

We claim that there exists a clique of size k in graph G iff object x can reach
agent Y within a total of k3 + 4k2 + k+ 2 swaps or a makespan of 5k(k− 1)/2 +
3k+ 4. An agent A`v (or T `) is said to be “validated” if she obtains at a moment
object a`∗v (or t`∗). We omit the details of the proof but the idea is that, let object
x reach agent Y , all the k agents T ` and all the k−1 agents A`v of k branches Av
need to be validated. The associated clique in graph G is given by the vertices
v for which all the k − 1 agents A`v have been validated. All the agents A`v, for
1 ≤ ` < k, are validated if we can bring in the branch k − 1 objects uvwv (or
uwvv , following the order) representing an edge incident to v. Observe that the
given budget allows bringing in the branches only k(k − 1) objects uvwv and the
construction forces to choose uvww if uvwv has been chosen.

Combining the proofs of Thm. 6 and Prop. 2 leads to hardness for GLS.

Corollary 7. GLS-sum and GLS-makespan are co-W[1] hard even for trees.

This W[1]-hardness for RO and GLS parameterized by the length of the
sequence rules out the existence of FPT algorithms even in trees under standard
complexity assumptions. However, the following results on the membership to
respectively W[1] and co-A[2] show that the problems are not so hard. They are
notably in XP for any graph, thus tractable when the parameter is a constant.

Theorem 8. RO-sum is in W[1].

Proof. An instance I of RO with a swap dynamics model (N,M,�, σ0, G), agent
A and object x, and k as a total number of swaps, is transformed into an instance
I ′ = (A, ϕ) of MC(Σ1), known to be W[1]-complete (Thm. 1). Structure A is
an (E ,�, σ0, A,X)-structure with variables in N ∪M , where relations E , �, σ0,
A and X are defined as follows. The binary relation E over N2 represents the
edge set E. The ternary relation � over N ×M2 represents the preferences of
the agents, i.e. �(i, a, b) means that agent i prefers object a to b. For the sake of
clarity, we write a�i b instead of �(i, a, b). The binary relation σ0 over N ×M
represents the initial allocation σ0, i.e. σ0(i, z) means that i is initially endowed
with z. Finally, the unary relations A and X respectively represent agent A and
object x, i.e. A(y) means that y is agent A and X(y) means that y is object x.

The Σ1-formula ϕ is defined as ϕ = ∃x0∃b0∃x1∃y1∃a1∃b1 . . .
∃xk∃yk∃ak∃bk

(
σ0(x0, b0) ∧

∨
0≤k′≤k ψ

k′
)

with

ψk
′
≡ A(xk′)∧X(bk′)∧

k′∧
i=1

(
E (xi, yi)∧ bi�

xi

ai ∧ ai�
yi
bi ∧ oi(xi, ai)∧ oi(yi, bi)

)
where for all i, oi(q, r) stands for

(
σ0(q, r) ∧

∧i−1
j=1 xj 6= q ∧ yj 6= q

)
∨∨i−1

j=1

(∧i−1
p=j+1 xp 6= q ∧ qp 6= q

)
∧
(

(xj = q ∧ oj(yj , r))∨
(
yj = q ∧ oj(xj , r)

))
.

One can prove by induction over i that formula oi(q, r) is true iff object
r is owned by agent q before ith swap. Globally, formula ψk

′
is true iff the

sequence of exchanges between the agents (xi, yi) exchanging the objects (ai, bi),
for i ∈ {1, . . . , k′}, is a sequence of swaps leading to give object x to agent A.

The same idea and a slightly different FO formula work for RO-makespan.

Proposition 9. RO-makespan is in W[1].

Proof sketch. We reduce to MC(Σ1) but face a new difficulty. We cannot quan-
tify over all potential exchanges within makespan k: it would lead to a formula
of size Ω(n). The crux of this proof is to observe that not all exchanges are rel-
evant to decide the problem. Assume we process independent swaps in parallel
for up to k time steps. Looking at it from the end, the only relevant swap in the
last step k involves agent A, so we quantify over a single swap and ignore all
concurrent ones. In the one-before-last, only swaps involving A or A’s partner at
step k may be relevant. So considering two swaps happening at step k − 1 and
ignoring all other concurrent ones suffices. All in all, we need to quantify over
no more than 2k+1 exchanges. The rest is similar to that of Thm. 8.

A similar reasoning is applied to GLS. We reduce GLS to model-checking
FO formula using more sophisticated Σ2 formulas.

Proposition 10. GLS-sum/-makespan is in co-A[2].

Proof sketch. We reduce co-GLS to MC(Σ2), known to be A[2]-complete
(Thm 1), following an approach similar to that of Thm 8 and Prop 9.

The previous results show that RO and GLS are not “so hard” considering
the length of the sequence as a parameter. Furthermore, for some natural classes
of graphs, the problems are even tractable with respect to these parameters.

Proposition 11. RO/GLS-sum/makespan are FPT on bounded degree graphs.

Proof. The proof follows the idea developed for Proposition 9. Let ∆ be the
degree of G and consider the RO problem. At the kth step, the only relevant
exchange involves agent A and a neighbor, so there are O(∆) possible swaps. The
one-before-last step can only involve A or one her neighbor, therefore there are
at most 2∆ possible swaps for RO-sum and at most ∆+∆2 for RO-makespan.
This argument applies at any of the k steps, hence there are O(∆k.k!) sequences

of swaps for RO-sum and O(∆k2) for RO-makespan, and it suffices to verify if
one sequence assigns x to A. Concerning GLS, it suffices to test the reachability
to A of any object x such that y �A x, and so it just adds a factor of n.

6 Conclusion and Perspectives

This article studies the distributed process of swap dynamics along a network
for reallocating objects among agents. Two related problems are investigated:
Reachable Object (RO), “can a given agent obtain a given object?”, and
Guaranteed Level of Satisfaction (GLS), “is a given agent guaranteed
to get a given object or better?”. Both problems are hard but the parameterized
approach allows us to escape this difficulty for a relevant class of graphs.

We consider natural parameters constraining the number of swaps per agent
or the duration of the sequence. Assuming that they remain small is reasonable
in practice as the patience of the agents typically does not increase with the
instance size. In the case of few swaps per agent, RO and GLS remain hard
even on bounded degree graphs. So, this parameterization, although natural,
does not help us to grasp the problems. However, considering the length of the
sequence, although both problems are intractable even for trees, this hardness is
circumscribed to not “so hard” parameterized complexity classes, leading to the
possibility of handling the problems when the parameters do not depend on the
instance size, very natural assumption. Furthermore, unlike the first parameter,
the length of the sequence permits to obtain fixed parameter tractability on
bounded degree graphs, which typically model real social networks.

The parameterized approach allows progress in the understanding of the
problems and leads to significant and realistic positive results. So far, we have

considered restrictions on the network as well as on the solution size. A natural
extension is to investigate the influence of a third dimension: constraints on the
preference profile, e.g., single-peaked domains. Furthermore, assuming the full
knowledge of the preferences and the network is not relevant in all the contexts.
Relaxing this assumption could be a challenging future work.

References

1. Abdulkadiroǧlu, A., Sönmez, T.: House allocation with existing tenants. Journal
of Economic Theory 88(2), 233–260 (1999)

2. Abrahamson, K.A., Downey, R.G., Fellows, M.R.: Fixed-parameter tractability
and completeness IV: On completeness for W[P] and PSPACE analogues. Annals
of Pure and Applied Logic 73(3), 235–276 (1995)

3. Aziz, H., Biró, P., Lang, J., Lesca, J., Monnot, J.: Optimal reallocation under
additive and ordinal preferences. In: AAMAS. pp. 402–410 (2016)

4. Aziz, H., De Keijzer, B.: Housing markets with indifferences: A tale of two mech-
anisms. In: AAAI. pp. 1249–1255 (2012)

5. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmet-
ric instances of max-3sat. Tech. rep. (2004)

6. Chevaleyre, Y., Dunne, P., Endriss, U., Lang, J., Lemâıtre, M., Maudet, N., Padget,
J., Phelps, S., Rodrıguez-Aguilar, J.A., Sousa, P.: Issues in multiagent resource
allocation. Informatica 30(1), 3–31 (2006)

7. Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Multiagent resource alloca-
tion in k-additive domains: Preference representation and complexity. Annals of
Operations Research 163(1), 49–62 (2008)

8. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Negotiating over small bundles
of resources. In: AAMAS. pp. 296–302 (2005)

9. Chevaleyre, Y., Endriss, U., Maudet, N.: Allocating goods on a graph to eliminate
envy. In: AAAI. pp. 700–705 (2007)

10. Damamme, A., Beynier, A., Chevaleyre, Y., Maudet, N.: The power of swap deals
in distributed resource allocation. In: AAMAS. pp. 625–633 (2015)

11. Dunne, P.E., Chevaleyre, Y.: The complexity of deciding reachability properties of
distributed negotiation schemes. Theoretical Computer Science 396(1-3), 113–144
(2008)

12. Dunne, P.E., Wooldridge, M., Laurence, M.: The complexity of contract negotia-
tion. Artificial Intelligence 164(1-2), 23–46 (2005)

13. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a
Highly Connected World. Cambridge University Press (2010)

14. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Negotiating socially optimal alloca-
tions of resources. Journal of Artificial Intelligence Research 25, 315–348 (2006)

15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
16. Gourvès, L., Lesca, J., Wilczynski, A.: Object allocation via swaps along a social

network. In: IJCAI. pp. 213–219 (2017)
17. Jackson, M.O.: Social and Economic Networks. Princeton University Press (2008)
18. Sandholm, T.W.: Contract types for satisficing task allocation. In: AAAI Spring

Symposium. pp. 23–25 (1998)
19. Shapley, L., Scarf, H.: On cores and indivisibility. Journal of Mathematical Eco-

nomics 1(1), 23–37 (1974)

A Proofs for Section 3 (Relation between RO and GLS)

Proposition 2. co-RO is linearly reducible to GLS.

Proof. Let us show that x is not reachable for A in I iff A obtains y or an object
preferred to y in any reachable stable allocation in I ′.

Suppose that x is not reachable for A in I. At a stable allocation in I, either
(i) agent A gets an object from Px without having owned x during the sequence,
but it is not possible in I ′ because a �′A Px, and then agent A stays in I ′ with
object a, or (ii) agent A gets an object from Pa, and it will be also the case in
I ′. In both cases, agent A can exchange with Y in order to obtain y, and thus
gets an object preferred or equal to y.

Suppose now that x is reachable for A in I. It follows that x is also reachable
for A in I ′ since the social network G′ keeps the same structure as G concerning
the agents of N , and A does not use the objects of Px to obtain x in I. However,
by obtaining x, agent A cannot exchange any more with Y because of the con-
struction of the preferences �′ and the social network G′. Thus, agent A cannot
obtain an object preferred or equal to y in this sequence of swaps.

Observe that in this reduction, GLS asks whether agent A is guaranteed to
obtain her best object. The generalization to an object ranked at kth position is
straightforward by inserting k + 1 agents and objects, not accessible for A.

B Proofs for Section 5 (Length of the Sequence of Swaps)

Theorem 6. RO-sum and RO-makespan are W[1]-hard even for trees.

Proof. Let us prove that there exists a clique of size k in graph G iff object x is
reachable for agent Y within at most k3 + 4k2 + k + 2 swaps in total.

Suppose there exists a clique of size k in graph G. Let VC , with |VC | = k, be
the set of all vertices belonging to the clique, and C be the set of all edges of
the clique. We consider the edges (v, w) in C with respect to the order over the
edges previously assumed in the construction of the instance. Let us perform the
rational swaps between the following couples of agents for (v, w) ∈ C: {Y, Y [vw]},
{Y,Uvwv }, and {Uvww , Uvwv }, that lead to give object uvwv to agent Y . Then, we
decide to let object uvwv pass to branch Av. At this moment, a further swap
can be performed in the branch Uvw between Y and Uvwv . Within the Uvw’s
branches, we perform in total 2k(k− 1) swaps, considering all the k(k − 1)/2
edges of the clique in C. Now let us focus on the passage of an object uvwv (resp.
uvww) to branch Av (resp. Aw). To make the swaps rational within branch Av,
we need some auxiliary agents. We previously perform the swaps between agent

A`v and agent A
`[vw]
v , for each 1 ≤ ` ≤ k − j, if object uvwv in question is the

jth object to come into this branch. Then we perform the swaps along the path
[Y,A1

v, . . . , A
k−j
v] (k2(k− 1) swaps in total by considering all the objects uvwv

and uvww associated with an edge of the clique. After having performed all these
swaps, all the agents A`v, for 1 ≤ ` < k and v ∈ VC , possess an object uvwv (or
uwvv) associated with an edge (v, w) of the clique, and then can exchange with

agent A`∗v in order to obtain object a`∗v and be “validated” (in total k(k− 1)
swaps). By rationality of the swaps, object av can now go to agent A1

v via
path [Av, A

k−1
v , . . . , A1

v], for each v ∈ VC (k(k− 1) swaps in total). Then, by
increasing order of vertices v over VC , let Y swap with Y [v], and then with A1

v,
in order to obtain object av. (2k swaps in total by considering each v ∈ VC).
Let us focus now on the passage of object av to the branch of T `. Like in the
Av’s branch, if av is the jth object to come into this branch, then all the agents
T ` for 1 ≤ ` ≤ k + 1− j previously perform a swap with agent T `[v] in order to
let object av pass to reach agent T k+1−j (k(k + 1) swaps in total). Then, agent
T k+1−j can exchange with agent T k+1−j∗ to obtain object tk+1−j∗, and thus
T k+1−j is “validated” (k swaps). Since there are k validated Av’s branches, all
the agents T ` can be validated and thus, object t can go to agent Y via path
[T, T k, . . . , T 1, Y], for which the swaps are now rational (k + 1 swaps). Finally,
agent Y can swap with agent X since object t is the only object that X prefers
to object x (one swap), leading to the reachability of x by Y . Observe that we
have exactly performed k3 + 4k2 + k + 2 swaps.

Suppose now that object x is reachable for agent Y within at most k3+4k2+
k + 2 swaps. The only way for agent X to give x in a rational swap is to obtain
object t in return. Therefore, agent Y must previously get object t, initially
owned by agent T , who only accept to give t against tk∗. Moreover, t must pass
by all the agents T ` and each of them accepts to give t to their neighbor only
against object t`−1∗ or y[t]. Since for agent T1, this object is necessarily y[t],
it must be t`−1∗ for all the others. Therefore, all the agents T ` for 1 ≤ ` ≤ k
must obtain object t`∗ from their neighbor T `∗, who only accepts objects in
P := {av : v ∈ V }. Thus, there must be k objects in total within P that move
from their branch to the T branch in order to reach an agent T `. So far, the
necessary swaps are those between X and Y (one swap), the swaps between each
T ` and T `∗ (k swaps), and the swaps along the path [T, T k, . . . , T1, Y] (k + 1
swaps), so in total 2k + 2 swaps.

Consider an object av ∈ P which must move to an agent T `. This object
must follow the path [Av, A

k−1
v , . . . , A1

v, Y, T
1, . . . , T `]. Consider first the sub-

path [A1
v, Y, T

1, . . . , T `], from the moment where object av reaches agent A1
v.

This agent only accepts to swap it against object y[v], therefore agent Y must
previously perform a swap with agent Y [v] (k swaps in total by considering
the k chosen objects in P). Observe that the jth object in P entering in the
T `’s branch must reach agent Tk+1−j , otherwise an object should pass twice
by the same agent, which contradicts the rationality assumption of the swaps.
Therefore, by construction of the preferences, the objects in P must go into the
T `’s branch by increasing order of indices. By rationality of the swaps, agent
Y accepts in exchange of object av in the swap with agent T 1 only objects
coming from the T `’s branch, and thus only objects in {t1[w] : w ≥ v} that do
not block the future swaps (typically t1[v] is appropriate). Therefore, T 1 must
perform an exchange with one of the T 1[w] before av. Observe that this also
holds for the other agents in this branch and thus concerns all the agents T ` for
1 ≤ ` ≤ k+1−j if av is the jth object of P to come into the branch. By counting

the swaps between each such T ` and one agent T `[w], and the swaps along the
path [Y, T1, . . . , Tk+1−j] for each object in P , we obtain k(k + 1) swaps.

Now consider the first part where object av moves to agent Y from Av along
the path [Av, A

k−1
v , . . . , A1

v]. The conditions are similar to those on the T `’s
branch. Each agent A`v on the path only accepts object y[v] or a`−1∗ in return of
giving object ai, and agent Av only prefers ak∗ to av. Since for A1

v the preferred
object is necessarily y[v], the other agents must obtain a`−1∗v . However, all the

agents A`∗v , need an object within Dv := {uδv(d)v : 1 ≤ d ≤ dv} to give object A`∗v
in a rational swap. It follows that each agent A`v on the path must get object
a`−1∗v and previously an object within Dv for letting pass object av to agent A1

v.
Thus, k − 1 objects within Dv must be chosen to come into the Av’s branch.
Once it is done, the remaining swaps are all the swaps between A`v and A`∗v which
lead to k(k− 1) swaps in total, and the swaps for making object av reach agent
A1
v along the path [Av, A

k−1
v , . . . , A1

v, Y], leading to k2 more swaps.

Now, consider an object uvwv (or uwvv depending on the order) which is chosen
to come into the Av’s branch. Similarly as in the T `’s branch, by construction
of the preferences, the objects in Dv must arrive by increasing lexicographical
order, and if uvwv is the jth object in Dv which enters in the Av’s branch, then it
must come to agent Ak−jv . Moreover, each agent A`v on the path [A1

v, . . . , A
k−j
v]

must previously make a swap with an auxiliary agent A
`[δv(d)]
v for 1 ≤ d ≤ dv

that does not block the future swaps, typically with A
`[vw]
v (or A

`[wv]
v depending

on the order). Therefore, by combining the swaps along [Y,A1
v, . . . , A

k−j
v] and the

swaps between each A`v and one agent in A
`[δv(d)]
v , we obtain in total k2(k− 1)

swaps. To sum up, so far, we can count k3 + 2k2 + 3k + 2 necessary swaps.
Therefore, it remains in the budget exactly 2k(k − 1) swaps. By construction
of the preferences, a previous swap between Y and the auxiliary agent Y [vw] is
necessary to make a first swap between Y and Uvwv occur. Observe that once an
object uvwv is left from the Uvw branch, no other agent Uv

′w′

v′ can swap with Y
because the swap with the auxiliary agent is not possible. The only possibility
is the swap between Uvwv and Uvww , and then between Uvwv and Y . This leads
to the obligation of choosing both objects uvwv and uvww to make them pass to
the branch of Av, and we need four swaps to do it. Hence, with our remaining
budget, we can only select k(k − 1)/2 branches Uvw which correspond to an
edge. Since the chosen objects allow validating k−1 incident edges of k vertices,
the associated edges in G form a clique of size k.

The same reasoning holds for the makespan. Concerning the length of the
sequence, it suffices to observe that the minimal sequence, by performing parallel
swaps, is almost totally conditioned by the exchanges of agent Y . Obviously the
number of swaps involving Y , precisely 5k(k − 1)/2 + 3k + 3 swaps, is a lower
bound for the makespan. But actually one can verify that all the other swaps
can be performed in parallel of a swap involving Y . The only exception concerns
the last swap between agent T 2 and agent T 1 for exchanging object t. Indeed,
once Y gives to agent T 1 object av corresponding to the last vertex v of the
clique (with respect to the order on vertices), agent T 1 can swap with agent
T 1∗ to obtain object t1∗, while agent Y prepares in parallel the swap to obtain

object t by swapping with agent Y [t]. But agent T 1 still needs to swap with
agent T 2 to obtain object t and Y has no swap to perform in parallel. Therefore,
the makespan is 5k(k − 1)/2 + 3k + 4.

The only possibility to answer true to a no-instance would be to choose more
than k(k − 1)/2 branches associated with an edge among the Uvw’s branches
in order to validate more agents in the Av’s branches. However, it would imply
at least three more swaps for agent Y and thus would increase the makespan,
contradiction.

Theorem 8. RO-sum is in W[1].

Proof. Let us prove by induction over i that formula oi(y, z) is true iff object z
is owned by agent y before ith swap. Formula o1(y, z) is true iff σ0(y, z) is true,
i.e. y initially owns z. Consider step i, agent y and object z, and suppose that
oj(., .) is correct for all j = 1, . . . , i − 1. If y has not performed a swap before
step i, then the first member of the disjunction in the formula is false, but the
second one is true iff z is the object initially owned by y. Otherwise, there exists
some xj or yj , say xj , for j ≤ i, such that xj = y. Therefore, the second member
of the disjunction in the formula is false, but the first one is true iff j is the last
swap of agent xi before step i, and oj(yj , z) is true. So, this correctly expresses
the current endowment of agent y just before step i if oj(yj , z) is correct, which
is the case by induction assumption. Hence, formula oi(y, z) correctly expresses
whether agent y owns z just before ith swap.

Now, observe that formula ψk
′

is true iff the sequence of exchanges between
the agents (xi, yi) exchanging the objects (ai, bi), for i ∈ {1, . . . , k′}, is a sequence
of swaps leading to give object x to agent A. Indeed, ψk

′
repertories the two

conditions for a swap. The two agents xi and yi involved in the ith swap must
be connected in the social network and the exchange must be rational: xi must
prefer object bi, which must be the object of agent yi just before swap i, to
object ai, and vice versa. Moreover, ψk

′
imposes that one of the agent involved

in the last swap must be agent A and obtain in this last swap object x. Thus,
ψk
′

expresses the reachability of object x for agent A after exactly k′ swaps.

Hence, ϕ is true iff object x is reachable for agent A after k′ swaps, for k′ ≤ k,
or x is initially owned by A.

Proposition 9. RO-makespan is in W[1].

Proof. An instance I of RO with a swap dynamics model (N,M,�, σ0, G), agent
A and object x, and k as a total number of swaps, is transformed into an in-
stance I ′ = (A, ϕ) of MC(Σ1). Structure A is an (E ,�, σ0, A,X)-structure with
variables in N ∪M , where relations E , �, σ0, A and X are defined as follows.
The binary relation E over N2 represents the edge set E. The ternary relation
� over N ×M2 represents the preferences of the agents, i.e. � (i, a, b) means
that agent i prefers object a to object b. For the sake of clarity, we write a �i b
instead of � (i, a, b). The binary relation σ0 over N ×M represents the initial
allocation σ0, i.e. σ0(i, z) means that agent i is initially endowed with object z.

Finally, the unary relations A and X respectively represent agent A and object
x, i.e. A(y) means that y is agent A and X(y) means that y is object x.

The Σ1-formula ϕ is defined as ϕ = ∃x0∃a0∃x11∃y11∃a11∃b11 . . .
∃xL1

1 ∃y
L1
1 ∃a

L1
1 ∃b

L1
1 . . . ∃x1k∃y1k∃a1k∃b1k . . . ∃x

Lk

k ∃y
Lk

k ∃a
Lk

k ∃b
Lk

k ∃y∃b∨
k′≤k

∨
`1≤L1

· · ·
∨
`k′≤Lk′

(ψk
′

`1,...,`k′
∧ χk′`1,...,`k′) ∨

(
σ0(x0, a0) ∧ A(x0) ∧ X(a0)

)
with Li = 2k−i for all i ∈ {1, . . . , k}, and

ψk
′

`1,...,`k′
≡

k′∧
i=1

`i∧
j=1

(
E (xji , y

j
i) ∧

(
bji �xj

i
aji

)
∧
(
aji �yji b

j
i

)
∧ oij(x

j
i , a

j
i)∧

oij(y
j
i , b

j
i) ∧

`k′∨
j=1

(
A(xjk′) ∧X(bjk′)

)

χk
′

`1,...,`k′
≡

k′∧
i=1

`i∧
j=1

`i∧
p=j+1

(
(xji 6= xpi) ∧ (yji 6= ypi) ∧ (xji 6= ypi) ∧ (yji 6= xpi)∧

(aji 6= api) ∧ (bji 6= bpi) ∧ (aji 6= bpi) ∧ (bji 6= api)
)

where oij(., .) for all i, j stands for

oij(y, a) ≡
(
σ0(y, a) ∧

i−1∧
p=1

`p∧
r=1

(
xrp 6= y ∧ yrp 6= y

))
∨
i−1∨
p=1

`p∨
r=1

(((
opr(y

r
p, a)∧

y = xrp) ∨ (yrp = y ∧ opr(x
r
p, a))

)
∧

i−1∧
s=p+1

`s∧
t=1

(xts 6= y ∧ yts 6= y)
)

Formula ψk
′

`1,...,`k′
says, similarly as its definition in the proof of Theorem 8, that

any exchange must be a swap and that the last swap must give object x to agent
A. Formula oij(y, a), like in the previous proposition, is true iff agent y gets
object a just before jth swap of the ith sequence of parallel swaps. We omit the
proof because it is similar to the proof in Theorem 8. Formula χk

′

`1,...,`k′
says that

any parallel swaps must involve different couples of agents. Consequently, ϕ is
true iff x is reachable for A by a sequence of swaps which can be decomposable
into a sequence of at most k sets of parallel swaps. We now verify that the size
of the formula is in function of k only, by proving that the ith set of parallel
swaps has at most Li = 2k−i parallel swaps. Observe first that at the kth set,
the last one, at most one swap is required: the swap between an agent Y and
A, that makes A getting object x. All the other parallel swaps are useless for
the reachability of x for A. Therefore, there is at most 2k−k = 1 useful swaps
at the kth set. Consider the ith set and assume that at the (i+ 1)th set at most
2k−i−1 parallel swaps are useful. All the useful parallel swaps at ith set can only
involve agents that are involved in all the jth sets for j ∈ {i+ 1, . . . , k}. There is
at most 2× {the maximum number of useful parallel swaps at the (i+ 1)th set}
such agents, and thus at most 2k−i parallel swaps at the ith set.

Proposition 10. GLS-sum/-makespan is in co-A[2].

Proof. An instance I of co-GLS with a swap dynamics model (N,M,�, σ0, G),
agent A, object y, and at most k swaps in total, is transformed into an instance
I ′ = (A, ϕ) of MC(Σ2), known to be A[2]-complete (Thm 1). Co-GLS problem
asks whether there exists a reachable allocation, stable under the condition of
at most k exchanges, where agent A obtains an object less preferred than y.
Structure A is an (E ,�, σ0, A, Y)-structure with variables in N ∪ M , where
relations E , �, σ0, A are defined in the same way as in the proof of Thm. 8, and
Y is an unary relation in which Y (z) means that z is object y.

The Σ2-formula ϕ is equal to ∃c∃z∃x0∃x1∃y1∃a1∃b1 . . . ∃xk∃yk∃ak∃bk
∀x∀y∀a∀b

(
ψk ∨

∨
0≤k′<k ψ

k′ ∧ χk′
)

with

ψk
′
≡

k′∧
i=1

(
E (xi, yi) ∧ oi(xi, ai) ∧ oi(yi, bi) ∧ bi�

xi

ai ∧ ai�
yi
bi

)
∧ A(xk′) ∧ ok+1(xk′ , c) ∧ Y (z) ∧ z �

xk′
c

χk
′
≡
(

E (x, y) ∧ ok′+1(x, a) ∧ ok′+1(y, b)
)
→
(
a�
x
b ∨ b�

y
a
)

where for all i, oi(., .) is defined as in Thm. 8.
It is easy to see that formula ϕ expresses the reachability of an object c for

agent A such that A prefers y to c, either in a stable allocation or within at
most k swaps. Hence, co-GLS-sum is correctly translated. The reasoning for
co-GLS-makespan is the same, based on the formula of the proof in Prop. 9.

