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Résumé
On étudie dans cet article la possibilité d’atteindre

des couplages optimaux au sens de Pareto par le biais
d’échanges entre paires d’agents dans des problèmes d’ap-
pariement en présence d’un couplage initial. On considère
trois problèmes d’appariement particuliers : le problème
d’allocation de maisons dans lequel à chaque agent doit
être affecté exactement un objet, ainsi que le problème des
mariages stables et le problème des colocataires, dans les-
quels les agents sont couplés avec d’autres agents. Dans ce
cadre, on examine trois différentes notions d’échanges amé-
liorants entre paires d’agents. Tandis qu’il peut être véri-
fié en temps polynomial si un couplage Pareto-optimal peut
être atteint lorsque les échanges sont améliorants relative-
ment à des paires bloquantes d’agents, vérifier si toutes les
séquences d’échanges mènent à un couplage Pareto-optimal
est difficile. Alternativement, on prouve que ces deux pro-
blèmes sont difficiles lorsque l’on considère des échanges
dans lesquels ce sont les agents qui échangent qui doivent
améliorer leur situation. Ce résultat confirme et étend une
conjecture faite par Damamme et al. [16] qui ont, de plus,
montré que dans le problème particulier d’allocation de mai-
sons, toute séquence d’échanges améliorants converge vers
une allocation Pareto-optimale sous des préférences unimo-
dales. On montre dans cet article que, dans les problèmes de
mariages stables et de colocataires, l’unimodalité des pré-
férences n’est pas suffisante pour obtenir un tel résultat de
convergence. En revanche, la restriction encore plus forte
des préférences 1-Euclidiennes le permet.

Abstract
We study whether Pareto-optimal stable matchings can

be reached via pairwise swaps in one-to-one matching mar-
kets with initial assignments. We consider housing markets,
marriage markets, and roommate markets as well as three
different notions of swap rationality. Our main results are
as follows. While it can be efficiently determined whether a
Pareto-optimal stable matching can be reached when defin-
ing swaps via blocking pairs, checking whether this is the

case for all such sequences is computationally intractable.
When defining swaps such that all involved agents need to
be better off, even deciding whether a Pareto-optimal stable
matching can be reached via some sequence is intractable.
This confirms and extends a conjecture made by Damamme
et al. [16] who have furthermore shown that convergence
to a Pareto-optimal matching is guaranteed in housing mar-
kets with single-peaked preferences. We show that in mar-
riage and roommate markets, single-peakedness is not suf-
ficient for this to hold, but the stronger restriction of one-
dimensional Euclidean preferences is.

1 Introduction

One-to-one matchings, where individuals are matched
with resources or other individuals, are omnipresent in ev-
eryday life. Examples include the job market, assigning
offices to workers, pairing students in working groups, and
online dating. The formal study of matching procedures
leads to challenging algorithmic problems while being of
immediate practical interest [25, 28]. One typically dis-
tinguishes between three different types of abstract one-to-
one matching settings. In housing markets [32], each agent
is matched with an object (usually referred to as a house).
In marriage markets [21], agents are partitioned into two
groups—say, males and females—and each member of one
group is matched with an agent from the other group. Fi-
nally, in roommate markets [21], all agents belong to the
same group and each agent is matched with another agent.
By supposing that agents are rational and want to maximize
their satisfaction, individual agreements may naturally oc-
cur among them and especially, for realistic reasons, be-
tween small groups of agents. An important question is
then whether sequences of such individual agreements can
lead to socially optimal outcomes. In many applications, it
is reasonable to assume that there is an initial assignment



because agents already live in a house, are engaged in a re-
lationship, and are employed by a company [1, 29]. Under
these assumptions, we focus on atomic agreements which
require the least coordination: pairwise swaps.

We consider three different types of individual rational-
ity for pairwise swaps. In housing markets, there is only
one meaningful notion of swap rationality: two agents will
only exchange objects if both of them are better off. By
contrast, when matching agents with each other, one could
require that all four agents involved in a swap or only two
of them are better off. The latter requirement allows for
two kinds of swap rationality: two agents who exchange
their match are better off (e.g., a company and its subsidiary
exchange employees without asking their consent) or two
agents who decide to form a new pair are better off (e.g.,
two lovers leave their current partners to be together).

Social optimality in settings with ordinal preferences
like that of matching markets is measured in terms of
Pareto-optimality. We therefore study whether there ex-
ists a sequence of pairwise swaps that results in a Pareto-
optimal matching that does not allow for further swaps (and
hence is called stable). Whenever all sequences of pairwise
swaps are of this kind, we say that the given type of swap
dynamics converges.

It turns out that in all three types of matching markets
and all three notions of swap rationality, it may not be pos-
sible to reach a Pareto-optimal stable matching from the
initial assignment. We prove that deciding whether this is
the case is NP-hard for two types of swap rationality while
it can be solved in polynomial time for swaps based on
blocking pairs. However, for all types of rationality, check-
ing convergence is co-NP-hard. On the other hand, we show
that when preferences are one-dimensional Euclidean—a
natural but demanding restriction—swap dynamics for two
types of swap rationality will always converge.

2 Related Work

Damamme et al. [16] investigated the dynamics of indi-
vidually rational pairwise swaps in housing markets, where
two agents are better off by exchanging their objects. Re-
cently, variants of this problem that further restrict the
agents’ interactions using underlying graph structures have
been examined [22, 23, 31].

In marriage and roommate markets, most of the litera-
ture focuses on deviations based on blocking pairs, where
two agents decide to leave their old partners in order to be
matched with each other. Blocking pairs are best known for
their role in the definition of stability [21], but some papers
also studied the dynamics of blocking pair swaps [2, 30].
The notion of exchange stability, where two agents agree
to exchange their partners, has been investigated in both
roommate markets [8, 13] and marriage markets [14]. We
consider both types of swaps, i.e., blocking pair swaps and

exchange rational swaps, but focus on the study of dynam-
ics that reach Pareto-optimal matchings.

Perhaps closest to our work is a result by Damamme
et al. [16] who proved that swap dynamics always con-
verge to a Pareto-optimal matching in housing markets un-
der single-peaked preferences. However, they left open
the computational problem of deciding whether a Pareto-
optimal stable matching can be reached for unrestricted
preferences and conjectured this problem to be intractable.
We solve this problem and extend it to marriage and room-
mate markets. Moreover, we prove that their convergence
result for housing markets under single-peaked preferences
does not extend to marriage and roommate markets, but can
be restored when restricting preferences even further.

3 The Model

We are given a set N of agents {1, . . . , n} and a set O of
objects {o1, . . . , on} such that |N | = |O| = n. Each agent
i ∈ N has strict ordinal preferences, given by a linear order
�i, over a set Ai of alternatives to be matched with. In the
matching markets we consider, Ai is either a subset of the
set of agents N or the set of objects O. A tuple of preference
relations �= (�1, . . . ,�n) is called a preference profile.

3.1 Matching Markets

In this article, we are considering three different set-
tings where the goal is to match the agents either with
objects—like in housing markets—or with other agents—
like in marriage or roommate markets. In all cases, we
assume that there is an initial matching. More formally,

— a housing market consists of a preference profile
where Ai = O for all i ∈ N, and an initial endow-
ment given as a bijection µ : N → O,

— a marriage market consists of a preference profile
where N = W ∪ M with W ∩ M = ∅, Ai = M for
all i ∈ W and Ai = W for all i ∈ M, and an initial
matching given as a bijection µ : W → M, and

— a roommate market consists of a preference profile
with even n and Ai = N \ {i} for all i ∈ N, and an
initial matching given as an involution µ : N → N
such that µ(i) , i for all i ∈ N.

When allowing for indifferences as well as unacceptabil-
ities in the preferences, the three settings form a hierarchy:
housing markets are marriage markets where the “objects”
are indifferent between all agents, and marriage markets
are roommate markets where all agents of the same type
are considered unacceptable. In this paper, however, we do
not make either assumption and therefore these inclusion
relationships do not hold.

The key question studied in this paper is whether Pareto-
optimal matchings can be reached from the initial matching
via local modifications. A matching is Pareto-optimal if



there is no other matching µ′ such that for every agent i,
µ′(i) �i µ(i) and for at least one agent j, µ′( j) � j µ( j).

3.2 Preference Restrictions

We consider three restricted preference domains: single-
peaked preferences [12], globally-ranked preferences [4, 6]
and their common subdomain of one-dimensional Eu-
clidean preferences [15]. A preference profile � is single-
peaked if there exists a linear order > over the alternatives
in A :=

⋃
i∈N Ai such that for each agent i and each triple of

alternatives x, y, z ∈ Ai with x > y > z or z > y > x, x �i y
implies y �i z. A preference profile � is globally-ranked
(we also speak about correlated markets [6]) if there ex-
ists a global order > over all possible pairs in the matching
market such that for every agent i and any two alternatives
x, y ∈ Ai, x �i y iff {i, x} > {i, y}. Globally-ranked prefer-
ences impose no restriction in a housing market (the agents
are matched with objects which do not express preference),
but may capture in other markets the idea that each pair
of agents generates an absolute profit and thus each agent
prefers the agents with who she can get a better profit.
A preference profile � is one-dimensional Euclidean (1-
Euclidean) if there exists an embedding E : N ∪O→ R on
the real line such that for every agent i and any two alter-
natives x, y ∈ Ai, x �i y iff |E(i) − E(x)| < |E(i) − E(y)|.

One-dimensional Euclidean preferences form a sub-
domain of single-peaked preferences because every 1-
Euclidean preference profile is singled-peaked for the lin-
ear order > given by x > y iff E(x) > E(y). How-
ever, a single-peaked preference profile may not be 1-
Euclidean, therefore the inclusion is strict. Moreover, one-
dimensional Euclidean preferences form a subdomain of
globally-ranked preferences: from a 1-Euclidean prefer-
ence profile, a global ranking over all possible pairs can
be extracted by sorting all pairs according to the Euclidean
distance on the embedding E between the two partners. Re-
versely, a globally-ranked preference profile may not be
1-Euclidean, therefore the inclusion is strict. We know
that 1-Euclidean preferences are both globally-ranked and
single-peaked. However, the reverse is not true: a globally-
ranked and single-peaked preference profile may not be
1-Euclidean, even in markets matching agents with each
other. We omit the examples due to space restrictions.

While assuming that all agents have 1-Euclidean pref-
erences certainly represents a strong restriction, there are
nevertheless some applications where this assumption is
not unreasonable. For example, in job markets, preferences
could be 1-Euclidean because employees prefer one work-
place to another if it is closer to their home, or when form-
ing pairs of students for the realization of a project, a stu-
dent could prefer to be matched with a student who is the
most productive as the same hours as her.

Note that all considered preference restrictions are rec-

ognizable in polynomial time: there exist polynomial time
algorithms for checking single-peakedness [10, 20] or the
satisfaction of the 1-Euclidean property [18, 19, 26]. More-
over, checking whether a preference profile is globally-
ranked boils down to checking the acyclicity of the directed
graph defined on all possible pairs and where there is an arc
from a pair {i, j} to a pair {i, k} if and only if k �i j [4]; this
can be done in polynomial time.

3.3 Rational Swaps

We study sequences of matchings in which two pairs of
the current matching are permuted. More formally, we
assume that a swap w.r.t. two agents (i, j) transforms a
matching µ into a matching µ′ where agents i and j have
exchanged their matches, i.e., µ′(i) = µ( j) and µ′( j) = µ(i),
while the rest of the matching remains unchanged, i.e.,
µ′(k) = µ(k) for every k < {i, j, µ(i), µ( j)}.

We furthermore require these swaps to be rational in the
sense that they result from an agreement among agents, and
thus make the agents involved in the agreement better off.

The most natural notion of rationality is exchange-
rationality, which requires that the two agents who ex-
change their matches are better off [8]. A swap w.r.t. agents
(i, j) from matching µ is exchange rational (ER) if the
agents who exchange their matches are better off, i.e.,

µ( j) �i µ(i) and µ(i) � j µ( j). (ER-swap)

Exchange-rationality is the only meaningful notion of swap
rationality in housing markets because only one side of the
market has preferences. However, several notions of ratio-
nality emerge in marriage and roommate markets, where
agents are matched with each other. One could demand
that only two of the agents who agree to form a new pair
need to be better off. This notion of rational swaps is based
on the classic idea of blocking pairs, which forms the basis
of the standard notion of stability [21]. A swap w.r.t. agents
(i, j) from matching µ between agents is blocking pair (BP)
rational if one of the new pairs in µ′ forms a blocking pair,
where both agents are better off, i.e.,[
µ( j) �i µ(i) and i �µ( j) j

]
or
[
µ(i) � j µ( j) and j �µ(i) i

]
.

(BP-swap)
We refer to a BP-swap by mentioning the associated

blocking pair ((i, µ( j)) or ( j, µ(i))). The old partners of the
blocking pair are also assumed to be matched together. 1

Finally, in marriage and roommate markets, a stronger
notion of rationality is that of a fully rational swap, which
makes all four involved agents better off. A swap w.r.t.

1. Once the old partners are alone, they have an incentive to form a
new pair. Roth and Vande Vate [30] therefore decompose BP-swaps into
two steps. We do not explicitly consider these steps in order to always
maintain a perfect matching like, e.g., Knuth [27].



agents (i, j) from matching µ is fully rational (FR) if all
four agents involved in the swap are better off, i.e.,

µ( j) �i µ(i), µ(i) � j µ( j), j �µ(i) i, and i �µ( j) j.
(FR-swap)

Note that for marriage and roommate markets, an FR-
swap w.r.t. pair of agents (i, j) from a matching µ is an
ER-swap w.r.t. pair (i, j) or (µ(i), µ( j)) and also a BP-swap
w.r.t blocking pair (i, µ( j)) or ( j, µ(i)). We thus obtain the
following implications:

BP-swap ⇐ FR-swap ⇒ ER-swap
The different types of swap rationality are illustrated in

the following example.

Example 1. Consider a roommate market with six agents.
The preferences of the agents are given below, where the
initial assignment is marked with frames.

1 : 4 � 3 � 6 � 5 � 2
2 : 3 � 1 � 4 � 6 � 5
3 : 6 � 2 � 1 � 5 � 4
4 : 5 � 1 � 3 � 2 � 6
5 : 2 � 6 � 4 � 1 � 3
6 : 4 � 3 � 1 � 2 � 5

The swap w.r.t. pair (1, 2), which matches Agent 1 with
Agent 4 and Agent 2 with Agent 3, is an FR-swap because
every involved agent is better off. Hence, this is also an
ER-swap for pair (1, 2) or (3, 4) because they both prefer
to exchange their partner. It is also a BP-swap for blocking
pair (2, 3) or (1, 4) because they both prefer to be together
than with their current partner.

The swap w.r.t. pair (1, 6) is a BP-swap for blocking pair
(3, 6) because Agent 3, the old partner of Agent 1, prefers
to be with Agent 6, as well as Agent 6 who prefers 3 to her
old partner 5. This is not an ER-swap (and hence not an
FR-swap) because neither the agents in pair (1, 6) nor in
pair (3, 5) want to exchange their partners.

The swap w.r.t. pair (4, 6) is an ER-swap for (4, 6) be-
cause Agent 4 prefers the current partner of 6, i.e., Agent
5, to her current partner and 6 prefers the current part-
ner of 4, i.e., Agent 2, to her current partner. This is not a
BP-swap (and hence not an FR-swap) because it matches
Agent 4 with Agent 5, who prefers to stay with Agent 6, and
Agent 6 with Agent 2, who prefers to stay with Agent 4.

Stability can now be defined according to the different
notions of rational swaps. A matching µ is σ-stable, for
σ ∈ {FR,ER,BP}, if no σ-swap can be performed from
matching µ. A sequence of σ-swaps, for σ ∈ {FR,ER,BP},
corresponds to a sequence of matchings (µ0, µ1, . . . , µr)
such that a σ-swap transforms each matching µt into
matching µt+1 for every 0 ≤ t < r. Then, matching µ is
σ-reachable from initial matching µ0 if there exists a se-
quence of σ-swaps (µ0, µ1, . . . , µr) such that µr = µ. When
the context is clear, we omit σ and the initial matching µ0.

Aσ-dynamics is defined according to initial matching µ0

and a type σ of rational swaps. The σ-dynamics is finite if

all associated sequences of σ-swaps terminate in a σ-stable
matching, and it is said to converge if it is finite for every
initial matching µ0.

We consider the following decision problems related to
the convergence of dynamics to a Pareto-optimal matching.
∃-σ-ParetoSequence / ∀-σ-ParetoSequence
Input: Matching market, type σ of rational swaps
Question: Does there exist a sequence of σ-swaps

terminating in a Pareto-optimal σ-stable
matching? / Do all sequences of σ-
swaps terminate in a Pareto-optimal σ-
stable matching?

In order to tackle these two questions, we also study the
stability and convergence properties of the considered dy-
namics in the three types of matching markets.

4 Exchange Rational Swaps

In housing markets, every ER-swap represents a Pareto
improvement. Since the number of agents and objects is
finite, ER-dynamics always converges and the existence of
ER-stable matchings is guaranteed (simply because every
Pareto-optimal matching happens to be ER-stable). How-
ever, it may be impossible to reach a Pareto-optimal match-
ing from a given matching by only applying ER-swaps.

Proposition 1. ER-dynamics may not converge to a
Pareto-optimal matching in housing markets.

Proof. Consider a housing market with n agents. The pref-
erences of the agents are given below, where the initial as-
signment is marked with frames and [. . . ] denotes an arbi-
trary order over the rest of objects.

1 : o1 � o2 � [. . . ]
2 : o2 � o3 � [. . . ]
3 : o3 � o4 � [. . . ]

. . .

n : on � o1 � [. . . ]
Observe that no ER-swap is possible in this instance,

therefore the initial matching (framed objects) is the unique
ER-reachable matching. However, there exists a unique
Pareto-optimal matching (circled objects), and this match-
ing is different from the initial one. Note that, in such an
instance, even if exchanges involving up to n−1 agents are
allowed, the Pareto-optimal matching will not be reached:
the only ER-exchange would involve all the n agents.

Nevertheless, it is known that ER-dynamics always con-
verges to a Pareto-optimal matching in housing markets
when the agents’ preferences are single-peaked [16].

In marriage and roommate markets, an ER-stable match-
ing may not exist, even for single-peaked preferences [8,
13]. However, it turns out that, for globally-ranked prefer-
ences, an ER-stable matching always exists, and, moreover,
the convergence to such a matching is guaranteed.



Proposition 2. ER-dynamics always converges in mar-
riage / roommate markets for globally-ranked preferences.

Proof. Denote by > the global order over all possible pairs
such that the preferences of the agents are globally-ranked
with respect to this global order. Define as f : µ → R the
potential function which assigns to each matching the sum
of ranks in order > of all the assigned pairs in the match-
ing, i.e., f (µ) =

∑
{i, j}s.t.µ(i)= j rank>({i, j})) with rank> the

function which gives the rank of the pairs in order >. Now
consider a sequence of ER-swaps given by the sequence of
matchings (µ0, µ1, . . . , µr). Between each matchings µt and
µt+1, with 0 ≤ t < r, an ER-swap is performed, say w.r.t.
pair (i, j) of agents. That means, by definition of an ER-
swap, that agents i and j prefer to exchange their partners in
µt, and thus, µt( j) �i µ

t(i) and µt(i) � j µ
t( j). This implies,

by correlation of the preferences, that {i, µt( j)} > {i, µt(i))}
and { j, µt(i)} > { j, µt( j)}. But agents i and µt( j) are matched
in µt+1, as well as agents j and µt(i). Since the rest of the
pairs remains unchanged between µt and µt+1, we get that
f (µt+1) < f (µt). Because the number of different match-
ings is finite, we can conclude that ER-dynamics always
converges.

In general, an ER-stable matching may not be Pareto-
optimal, thus convergence to a Pareto-optimal matching
is not guaranteed even when an ER-stable matching exists
(note that deciding the existence of an ER-stable matching
is NP-hard in marriage and roommate markets [13, 14]).

Proposition 3. ER-dynamics may not converge to a
Pareto-optimal matching, in marriage and roommate mar-
kets, even when an ER-stable matching exists and for
globally-ranked preferences.

Proof. Consider a marriage market with three women and
three men. The preferences are given below and the initial
assignment is marked with frames.

w1 : m1 � m2 � m3

w2 : m2 � m3 � m1

w3 : m3 � m1 � m2

m1 : w1 � w3 � w2

m2 : w2 � w1 � w3

m3 : w3 � w2 � w1

No ER-swap is possible from initial matching µ0 (framed
agents), therefore µ0 is the unique ER-reachable matching.
However, there is another matching (circled agents) which
is the unique Pareto-optimal matching. Note that this pref-
erence profile is globally-ranked with respect to, e.g., the
global order {w1,m1} > {w2,m2} > {w3,m3} > {w1,m2} >
{w2,m3} > {w3,m1} > {w1,m3} > {w2,m1} > {w3,m2}.

Now, consider a roommate market with six agents. Pref-
erences of the agents are given below, where the initial part-
ner of each agent is marked with frames and [. . . ] denotes
an arbitrary order over the rest of the agents.

1 : 3 � 2 � [. . . ] 4 : 6 � 3 � [. . . ]
2 : 5 � 1 � [. . . ] 5 : 2 � 6 � [. . . ]
3 : 1 � 4 � [. . . ] 6 : 4 � 5 � [. . . ]

No ER-swap is possible from initial matching µ0 (framed
agents), thus µ0 is the unique ER-reachable matching.

However, there is another matching (circled agents) which
is the unique Pareto-optimal matching. This preference
profile is globally-ranked w.r.t., e.g., the global order
{4, 6} > {1, 3} > {3, 4} > {2, 5} > {1, 2} > {5, 6} >
[. . . ].

Note that the above preference profiles are not 1-
Euclidean. In fact, they are not even single-peaked. Again,
more positive results can be obtained by restricting the do-
main of admissible preferences.

Proposition 4. Every ER-stable matching is Pareto-
optimal when preferences are single-peaked in marriage
and roommate markets.

Proof. Let µ be an ER-stable matching. For any two agents
i and j (in N for roommate markets, or both in either W
or M for marriage markets) it holds that µ(i) �i µ( j) or
µ( j) � j µ(i). Suppose there is another matching µ′ such
that µ′(i) �i µ(i) for every i ∈ N and there exists j ∈ N
such that µ′( j) � j µ( j). Then, there exists a Pareto im-
proving cycle from µ to µ′ along agents (n1, . . . , nk) such
that each agent ni, 1 ≤ i ≤ k, is matched in µ′ with
agent µ(n(i mod k)+1). For marriage markets, the agents in
(n1, . . . , nk) are restricted by definition to only one side of
the market, but it impacts both sides since the agents ex-
change agents of the other side. But there is no problem
of preferences of the matched agents because no agent is
worse off in µ′ compared to µ. The same holds for room-
mate markets. Since µ is ER-stable, it holds that k > 2.
However, for single-peaked preferences, one can prove,
by following the same proof by induction as Damamme
et al. [16], that a Pareto improving cycle of any length
cannot occur, contradicting the fact that µ is Pareto dom-
inated.

Propositions 2 and 4 allow us to conclude that sequences
of ER-swaps will always terminate in Pareto-optimal
matchings when preferences are both single-peaked and
globally-ranked, like in 1-Euclidean preferences.

Corollary 1. ER-dynamics always converges to a Pareto-
optimal matching in marriage and roommate markets for
1-Euclidean preferences.

For more general preferences, an interesting computa-
tional question is whether, given a preference profile and
an initial assignment, a Pareto-optimal matching can be
reached via ER-swaps. In the context of housing mar-
kets, the complexity of this question was mentioned as an
open problem by Damamme et al. [16]. It turns out that
this problem is computationally intractable for all kinds of
matching markets, even for globally-ranked preferences.

Theorem 1. ∃-ER-ParetoSequence is NP-hard in housing,
marriage, and roommate markets even for globally-ranked
preferences.



Proof. For the case of housing markets, we perform a re-
duction from 2P1N-SAT, a variant of SAT known to be
NP-complete [33], where the goal is to decide the satisfi-
ability of a CNF propositional formula where each vari-
able appears exactly twice as a positive literal and once as
a negative literal. The idea of the proof is close to the one
given by Gourvès et al. [22] for proving NP-hardness of
determining whether a given object is reachable by a given
agent. From an instance of 2P1N-SAT with formula ϕ on
m clauses C1, . . . ,Cm and p variables x1, . . . , xp, we build
a housing market (N,O,�, µ0) as follows.

For each clause C j, with 1 ≤ j ≤ m, we construct two
clause-agents in N denoted by A j and A′j and two clause-
objects in O denoted by a j and a′j such that µ0(A j) = a j and
µ0(A′j) = a′j. For each variable xi, with 1 ≤ i ≤ p, we con-
struct six literal-agents in N corresponding to two copies
of each literal, namely agents Y`

i and Z`
i who correspond to

the `th (` ∈ {1, 2}) positive occurrence of variable xi in for-
mula ϕ, denoted by x`i , and Yi and Zi who correspond to the
negative occurrence of variable xi in formula ϕ, denoted by
xi; we also create their associated literal-objects y`i , z`i , yi

and zi such that µ0(Y`
i ) = y`i , µ

0(Z`
i ) = z`i , µ

0(Yi) = yi and
µ0(Zi) = zi. The literal-agents are divided in two sets, de-
noted by Y and Z, which correspond to the original agents
and their copy, respectively, i.e., Y :=

⋃
1≤i≤p{Y1

i ,Y
2
i ,Y i}

and Z :=
⋃

1≤i≤p{Z1
i ,Z

2
i ,Zi}. Three additional agents B, T

and T ′ are created in N, with their initial assigned objects
denoted by b, t and t′, respectively.

The preferences are given below for each 1 ≤ i ≤ p and
1 ≤ j < m ([. . . ] is an arbitrary order over the rest of the
objects, {y j} is an arbitrary order over the literal-objects in⋃

1≤i≤p{y1
i , y

2
i , yi} associated with literals of clause C j and

cl(`i) is the index of the clause in which literal `i appears).
T : t′ � {y1} � t � [. . . ] T ′ : a′m � {y1} � t′ � [. . . ]

A j : a′j � {y j+1} � t � A′j : a j � {y j} � a′m �
{y j} � a j � [. . . ] {y j+1} � a′j � [. . . ]

Am : b � t � {ym} � am � [. . . ] A′m : am � {ym} � a′m � [. . . ]
Y1

i : z1
i � acl(xi) � acl(x1

i ) � Z1
i : y1

i � yi � acl(x1
i ) �

yi � y1
i � [. . . ] acl(xi) � z1

i � [. . . ]
Y2

i : z2
i � y1

i � acl(x2
i ) � Z2

i : y2
i � yi � y1

i �

yi � y2
i � [. . . ] acl(x2

i ) � z2
i � [. . . ]

Yi : zi � y2
i � yi � [. . . ] Zi : yi � y2

i � zi � [. . . ]
B : t � b � [. . . ]
We claim that formula ϕ is satisfiable if and only if

the matching assigning to each agent her best object is
reachable (this is the only Pareto-optimal matching). The
global idea is that the only way to reach this Pareto-optimal
matching is to make object t reach agent Am by first giving
to each clause-agent A j, via ER-swaps, a literal-object in
{y j}, objects associated with the literals of clause C j. Once
object t reaches clause-agent Am, each agent except A′m ex-
changes with her prime version agent (agents Z1

i , Z2
i and Zi

are the prime versions of agents Y1
i , Y2

i and Yi, respectively,
and B is the prime version of Am), and then the prime agents
make among them the reverse sequence of swaps of the

initial one where the goal was to make object t reach Am,
leading to the Pareto-optimal matching. By construction
of the preferences among the literal-agents, once a literal-
object associated with a positive (resp., negative) literal of
a variable has been chosen to go with a clause-agent A j,
no literal-object associated with a negative (resp., positive)
literal of this variable can reach a clause-agent. The details
of the equivalence are omitted due to space restrictions.

To adapt the proof to the case of marriage and
roommate markets, we now consider the objects in
O as agents. More precisely, we build a mar-
riage market (N,�, µ0) where N = M ∪ W with
W = {T,T ′, B, {A j, A′j}1≤ j≤m, {Y1

i ,Y
2
i ,Yi,Z1

i ,Z
2
i ,Zi}1≤i≤p}

and M = {t, t′, b, {a j, a′j}1≤ j≤m, {y1
i , y

2
i , yi, z1

i , z
2
i , zi}1≤i≤p}.

The preferences of women over men are the same as the
preferences of agents over objects previously described,
and the preferences of men over women are described be-
low for 1 ≤ j < m and 1 ≤ i ≤ p. Notation {Y j} (resp.,
{Z j}) denotes an arbitrary order over the literal-agents in
Y (resp., Z) that are associated with a literal of clause
C j where each “negative” literal-agent Y i (resp., Zi) is re-
placed by agent Y1

i (resp., Z1
i ), A0 stands for T , A′0 for T ′,

and [. . . ] is an arbitrary order over the rest of the women.
t : B � Am � · · · � A1 � T � [. . . ] t′ : T � T ′ � [. . . ]

a j : A′j � {Z j} � {Y j} � A j � [. . . ] a′j : A j � A′j � [. . . ]
am : A′m � {Zm} � {Ym} � Am � [. . . ] a′m : T ′ � A′1 � · · · �
y1

i : Z1
i � Z2

i � Y2
i � A′

cl(x1
i )
� A′

cl(x1
i )−1
� A′m � [. . . ]

Acl(x1
i )−1 � Acl(x1

i ) � Y1
i � [. . . ] z1

i : Y1
i � Z1

i � [. . . ]
y2

i : Z2
i � Zi � Yi � A′

cl(x2
i )
� A′

cl(x2
i )−1
� z2

i : Y2
i � Z2

i � [. . . ]

Acl(x2
i )−1 � Acl(x2

i ) � Y2
i � [. . . ] zi : Yi � Zi � [. . . ]

yi : Zi � Z2
i � Z1

i � A′cl(xi)
� A′cl(xi)−1 � b : Am � B � [. . . ]

Acl(xi)−1 � Acl(xi) � Y1
i � Y2

i � Yi � [. . . ]
For roommate markets, we consider the same market but

without distinguishing between men and women. The only
difference in the preferences is that [. . . ] is an arbitrary or-
der over all the rest of the agents. In such a way, there
is no incentive to partner with an agent who belongs to the
other side of the marriage market. Given these preferences,
a swap is rational for one side of the market if and only if it
is also rational for the other side (in the constructed room-
mate market, no ER-swap can occur between two agents
who were from two different sides in the marriage market).
In other words, the set of ER-swaps is identical to the set of
FR-swaps. Hence, the sequences of swaps that may occur
are exactly the same as in the proof for housing markets.

Note that one can exhibit a global order over pairs such
that the preferences are globally ranked.

Not surprisingly, for preferences more general than those
restricted to the 1-Euclidean domain, recognizing the in-
stances where ER-dynamics converges to a Pareto-optimal
matching is intractable. The proof is omitted due to space
restrictions but the idea is close to the proof of Theorem 1.

Theorem 2. ∀-ER-ParetoSequence is co-NP-hard in hous-
ing, marriage and roommate markets even for globally-



ranked preferences.

In housing markets, the size of a sequence of ER-swaps
is bounded by O(n2) because every agent involved in a
swap is strictly better off. Thus, since checking the Pareto-
optimality of a matching in housing markets can be done
in polynomial time [3], we get the following corollary.

Corollary 2. ∃-ER-ParetoSequence is NP-complete and
∀-ER-ParetoSequence is co-NP-complete in housing mar-
kets even for globally-ranked preferences.

5 Blocking Pair Swaps

BP-swaps cannot occur in housing markets because ob-
jects can never be better off. We thus focus in this section
on matching markets that match agents with each other.

First, by definition of a blocking pair, any BP-stable
matching is Pareto-optimal. Moreover, a BP-stable match-
ing always exists in marriage markets by the Deferred Ac-
ceptance algorithm [21]. However, the convergence to such
a state is not guaranteed, even for single-peaked prefer-
ences [27]. Nevertheless, there always exists a sequence
of BP-swaps leading to a stable matching [30]. 2

In roommate markets, even the existence of a BP-stable
matching is not guaranteed [21], and actually this is the
case even for single-peaked preferences. Nevertheless,
checking the existence of a stable matching in a roommate
market can be done in polynomial time [24], and there al-
ways exists a sequence of BP-swaps leading to a stable
matching when there exists one [17]. Therefore, by com-
bining these facts with the observation that every BP-stable
matching is Pareto-optimal, we get the following corollary.

Corollary 3. ∃-BP-ParetoSequence is solvable in polyno-
mial time in marriage and roommate markets.

However, in general, determining whether all sequences
of BP-swaps terminate in a Pareto-optimal matching, i.e.,
checking convergence of BP-dynamics to a Pareto-optimal
matching, is hard. This is due to the hardness of checking
the existence of a cycle in BP-dynamics.

Theorem 3. Determining whether BP-dynamics can cycle
in marriage and roommate markets is NP-hard.

Proof. We perform a reduction from (3,B2)-SAT, a variant
of 3-SAT known to be NP-complete [11], where the goal is
to decide the satisfiability of a CNF propositional formula
with exactly three literals per clause and where each vari-
able appears exactly twice as a positive literal and twice as
a negative literal. From an instance of (3,B2)-SAT with for-
mula ϕ on m clauses C1, . . . ,Cm and p variables x1, . . . , xp,

2. Assuming that the old partners also form a new pair does not alter
this result.

we build a marriage market (N = W ∪ M,�, µ0) as fol-
lows. For each clause C j, with 1 ≤ j ≤ m, we create
four clause-agents A j, B j, Q j and K j, where A j,Q j ∈ W
and B j,K j ∈ M. For each occurrence of variable xi,
with 1 ≤ i ≤ p, we create two literal-agents, i.e., agents
Z`

i ,D
`
i ∈ W and Y`

i , E
`
i ∈ M for the `th positive literal x`i of

xi, with ` ∈ {1, 2}, and Z
`

i ,D
`

i ∈ W and Y
`

i , E
`

i ∈ M for the
`th negative literal x`i of xi, with ` ∈ {1, 2}. Denote by A, B,
Q, K, D, E, Y and Z the sets of agents associated with the
same letter.

The preferences are given below, for 1 ≤ i ≤ p, 1 ≤ j ≤
m and ` ∈ {1, 2}, with the initial assignment marked with
frames. Notation {Y j} (resp., {D j}, {E j} and {Z j}) refers to
an arbitrary order over the literal-agents in Y (resp., D, E
and Z) corresponding to the literals of clause C j, and [. . . ]
is an arbitrary order over the rest of the agents of the other
type. In general, when a set is given in the preferences,
it refers to an arbitrary order over its elements minus the
elements of the set already explicitly given in the rest of
the preference ranking. Notation cl(`i) refers to the index
of the clause in which literal `i appears. Note that A0 (resp.,
B0) stands for Am (resp., Bm) and {Ym+1} stands for {Y1}.

A j : {Y j+1} � {Y j} � B j � B � [. . . ] B j : A j � A � {Z j+1} � {Z j} � [. . . ]

Z1
i : Y

1
i � Y

2
i � Y1

i � E1
i � Y1

i : D1
i � {Dcl(x1

i )} � Q � Z
1
i � Z

2
i �

Y � Bcl(x1
i ) � Bcl(x1

i )−1 � [. . . ] Acl(x1
i ) � Acl(x1

i )−1 � Z1
i � Qcl(x1

i ) � [. . . ]

Z2
i : Y

2
i � Y

1
i � Y2

i � E2
i � Y2

i : D2
i � {Dcl(x2

i )} � Q � Z
2
i � Z

1
i �

Y � Bcl(x2
i ) � Bcl(x2

i )−1 � [. . . ] Acl(x2
i ) � Acl(x2

i )−1 � Z2
i � Qcl(x2

i ) � [. . . ]

Z
1
i : Y1

i � Y2
i � Y

1
i � E

1
i � Y

1
i : D

1
i � {Dcl(x1

i )} � Q � Z1
i � Z2

i �

Y � Bcl(x1
i ) � Bcl(x1

i )−1 � [. . . ] Acl(x1
i ) � Acl(x1

i )−1 � Z
1
i � Qcl(x1

i ) � [. . . ]

Z
2
i : Y2

i � Y1
i � Y

2
i � E

2
i � Y

2
i : D

2
i � {Dcl(x2

i )} � Q � Z2
i � Z1

i �

Y � Bcl(x2
i ) � Bcl(x2

i )−1 � [. . . ] Acl(x2
i ) � Acl(x2

i )−1 � Z
2
i � Qcl(x2

i ) � [. . . ]

D`
i : Kcl(x`i ) � Y`

i � Y � [. . . ] E`
i : Qcl(x`i ) � Z`

i � Y � [. . . ]

D
`

i : Kcl(x`i ) � Y
`

i � Y � [. . . ] E
`

i : Qcl(x`i ) � Z
`

i � Y � [. . . ]

Q j : {Y j} � K j � {E j} K j : {D j} � Q j

We claim that BP-dynamics can cycle if and only if for-
mula ϕ is satisfiable. The global idea of the reduction
is the following. At the initial matching, the only pos-
sible BP-swaps involve blocking pairs with literal-agents
in D and clause-agents in K associated with the same
clause. By their swap, a literal-agent in D associated with
clause C j and clause-agent K j can “unlock” exactly one
literal-agent in Y associated with clause C j who will not
be matched with her most preferred agent anymore, and
thus could have an incentive to form a blocking pair. By
construction of the preferences, the only possibility to get
a cycle in BP-dynamics is that, for each clause C j, ex-
actly one literal-agent Y j in Y associated with C j is un-
locked and the cycle involves a sequence of blocking pairs
(A j, Y j), (A j, Y j+1), (A j+1, Y j+1), . . . (with j + 1 modulo m)
all along the m clauses. For this cycle to occur, the un-
locked literal-agents in Y must have been matched with
their associated agent in Z. Therefore, two unlocked literal-
agents in Y participating in the cycle cannot correspond to
opposite literals, otherwise one of them would be matched
at a moment of the cycle with an agent in Z corresponding
to her opposite literal, and thus would not agree to form a



blocking pair with a clause-agent. The details of the equiv-
alence are omitted. This proof can be adapted to roommate
markets by assuming that, in the preferences, [. . . ] is an ar-
bitrary order over the remaining agents where the agents of
the same “type” in the marriage market are ranked last.

Corollary 4. ∀-BP-ParetoSequence is co-NP-hard in mar-
riage and roommate markets.

Nevertheless, when the preferences are globally-ranked,
we can always reach a stable matching thanks to BP-
dynamics in both settings. Indeed, it has been proved that
BP-dynamics always converges in marriage markets with
globally-ranked preferences [7]. In roommate markets,
there always exists a unique BP-stable matching under 1-
Euclidean preferences [9]. We prove that convergence to
this matching is guaranteed using a potential function argu-
ment, and further, this holds for more general preferences,
namely globally-ranked preferences.

Proposition 5. BP-dynamics always converges in room-
mate markets for globally-ranked preferences.

Proof. Denote by > the global order over all possible
pairs such that the preferences of the agents are globally-
ranked with respect to >. Let d(µ) be the n/2-vector
of the ranks in > of all the different pairs of µ, i.e.,
d(µ) = (rank>({i, j}))i, j s.t. µ(i)= j with rank> the function
which gives the rank of the pairs in order >. Consider a
sequence of BP-swaps given by the following sequence of
matchings (µ0, µ1, . . . , µr). Between each pair of matchings
µt and µt+1 with 0 ≤ t < r, a BP-swap is performed, say
w.r.t. blocking pair (i, j). By definition of a BP-swap,
agents i and j prefer to be together than being with their
partner in µt, so j = µt+1(i) �i µ

t(i) and i = µt+1( j) � j µ
t( j),

which implies, by correlation of the preferences, that
{i, j} > {i, µt(i)} and {i, j} > { j, µt( j)}. Therefore,
(rank>({i, j}), rank>({µt(i), µt( j)})) is lexicographically
strictly smaller than (rank>({i, µt(i)}), rank>({ j, µt( j)})).
Since the rest of the pairs remains unchanged between µt

and µt+1, it follows that d(µt+1) is lexicographically strictly
smaller than d(µt). The number of different matchings is
finite, therefore BP-dynamics always converges.

Since every BP-stable matching is Pareto-optimal, we
obtain the following corollary.

Corollary 5. BP-dynamics always converges to a Pareto-
optimal matching in marriage and roommate markets when
the preferences are globally-ranked.

6 Fully Rational Swaps

Just as in the case of ER-swaps and housing markets, FR-
swaps always represent Pareto improvements because all
involved agents are strictly better off after the swap. Hence,

FR-stable matchings are guaranteed to exist because every
Pareto-optimal matching is FR-stable and FR-dynamics al-
ways converges because the number of agents is finite.

In Section 4, we have shown that ER-dynamics always
converges to a Pareto-optimal matching when the prefer-
ences of the agents are 1-Euclidean. It turns out that this
does not hold for FR-dynamics.

Proposition 6. A sequence of FR-swaps may not converge
to a Pareto-optimal matching in marriage and roommate
markets, even for 1-Euclidean preferences.

Proof. Consider a marriage market with three women and
three men. The preferences are given below, where the ini-
tial assignment is marked with frames.

w1 : m1 � m3 � m2

w2 : m3 � m1 � m2

w3 : m2 � m1 � m3

m1 : w1 � w3 � w2

m2 : w3 � w1 � w2

m3 : w2 � w1 � w3

Initial matching µ0 is the only reachable matching, be-
cause there is no FR-swap from µ0. However, there is an-
other matching (circled agents) which is not reachable but
which Pareto dominates matching µ0. The preferences are
1-Euclidean w.r.t. the following embedding on the real line.

m2 w3 w1m1 m3 w2

Now, consider a roommate market with six agents. The
preferences of the agents are given below, where the initial
assignment is marked with frames.

1 : 2 � 3 � 4 � 5 � 6
2 : 1 � 3 � 4 � 5 � 6
3 : 4 � 2 � 1 � 5 � 6

4 : 3 � 2 � 5 � 1 � 6
5 : 6 � 4 � 3 � 2 � 1
6 : 5 � 4 � 3 � 2 � 1

Initial matching µ0 is the only reachable matching, be-
cause there is no FR-swap from µ0. However, there is an-
other matching (circled agents) which is not reachable but
which Pareto dominates matching µ0. The preferences are
1-Euclidean w.r.t. the following embedding on the real line.

1 2 3 4 5 6

The proofs of Theorems 1 and 2 only dealt with
instances in which FR-swaps are identical to ER-
swaps. We thus immediately obtain hardness of ∃-FR-
ParetoSequence and ∀-FR-ParetoSequence. An FR-swap
makes four agents strictly better off and no agent worse
off, thus the size of a sequence of FR-swaps is bounded
by O(n2). Moreover, the Pareto-optimality of a matching
can be checked in polynomial time [5], therefore we get
the membership of the problems to NP and co-NP, respec-
tively.

Theorem 4. ∃-FR-ParetoSequence is NP-complete and
∀-FR-ParetoSequence is co-NP-complete in marriage and
roommate markets even for globally-ranked preferences.



7 Conclusion

We have studied the properties of different dynamics
of rational swaps in matching markets with initial assign-
ments and, in particular, the question of convergence to a
Pareto-optimal matching. For all considered settings, the
dynamics may not terminate in a Pareto-optimal matching
because (i) there is no stable matching, (ii) the dynamics
does not converge, or (iii) the stable matching that is even-
tually reached is not Pareto-optimal. An overview of our
results is given in Table 1.

Market Preferences ER-Swaps BP-Swaps FR-Swaps

Housing
General / GR Conv

SP Pareto [16]

1-D Pareto

Marriage

General – Stable [21] Conv
GR Conv (Prop. 2) Pareto (Cor. 5) Conv
SP – [13] Stable Conv
1-D Pareto (Cor. 1) Pareto Conv

Roommate

General – – [21] Conv
GR Conv (Prop. 2) Pareto (Cor. 5) Conv
SP – [8] – Conv
1-D Pareto (Cor. 1) Pareto Conv

Pareto⇒ Conv⇒ Stable

Table 1 – Summary of the results on the existence of
a stable matching (Stable), the guarantee of convergence
(Conv) and the guarantee of convergence to a Pareto-
optimal matching (Pareto) for the three different matching
markets under study, according to different types of rational
swaps and under different preference domains (General,
globally-ranked (GR), single-peaked (SP), and 1-Euclidean
(1-D)). Since Pareto ⇒ Convergence ⇒ Stable, we only
mention the strongest result which is satisfied. The only
meaningful type of rational swaps in housing markets are
exchange-rational swaps; hence, the empty spaces.

Computationally, determining whether there exists a se-
quence of rational swaps terminating in a Pareto-optimal
matching is NP-hard for fully rational swaps and exchange
rational swaps in all matching markets even for globally-
ranked preferences (Theorems 1 and 4). For swaps based
on blocking pairs, this problem can be solved efficiently
(Corollary 3). However, the convergence to a Pareto-
optimal matching, that is whether all sequences of swaps
terminate in a Pareto-optimal matching, is co-NP-hard to
decide (Corollary 4). Not surprisingly, the same hard-
ness result holds for fully rational and exchange rational
swaps, even for globally-ranked preferences (Theorems 2
and 4). Our computational results are summarized in Ta-
ble 2. Even if the existence of a sequence of swaps ter-
minating in a Pareto-optimal matching is not guaranteed
for single-peaked preferences in marriage and roommate
markets, it would be interesting to know whether this pref-
erence restriction is nevertheless sufficient for efficiently

solving our computational problems in these markets.

Market Prefs ER-Swaps BP-Swaps FR-Swaps
∃-ParSeq ∀-ParSeq ∃-ParSeq ∀-ParSeq ∃-ParSeq ∀-ParSeq

Housing
General / NP-c. co-NP-c.

GR (Cor. 2) (Cor. 2)
SP P [16] P [16]

General NP-h. co-NP-h. P co-NP-h. NP-c. co-NP-c.
Marriage / (Th. 1) (Th. 2) (Cor. 3) (Cor. 4) (Th. 4) (Th. 4)
Roommate GR NP-h. co-NP-h. P P NP-c. co-NP-c.

(Th. 1) (Th. 2) (Cor. 3) (Cor. 5) (Th. 4) (Th. 4)

Table 2 – Summary of the computational results on the
existence (∃-ParSeq) or the guarantee (∀-ParSeq) of se-
quences of rational swaps terminating in a Pareto-optimal
matching for the three different matching markets under
study, according to different types of rational swaps and un-
der different preference domains (General, globally-ranked
(GR) and single-peaked (SP)). P means polynomial time
solvable. The only meaningful type of rational swaps in
housing markets are ER-swaps; hence, the empty spaces.

The convergence to a Pareto-optimal matching in hous-
ing markets for exchange rational dynamics and single-
peaked preferences [16] does not hold for more gen-
eral settings where the “objects” are agents with prefer-
ences. However, this convergence is guaranteed under
1-Euclidean preferences in marriage and roommate mar-
kets. Hence, the generalization of this convergence result
to more general settings requires more structure in the pref-
erences.

A natural extension of this work would be to study mean-
ingful dynamics for hedonic games, where agents form
groups consisting of more than two agents.
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